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The semiclassical quantization scheme formulated by Bogomolny [E.B. Bogomolny, Nonlinearity
5, 805 (1992); Chaos 2, 5 (1992)], employing a suitably chosen Poincaré surface of section, has been
used to calculate the energy eigenvalues of the hydrogen atom in one and two dimensions and the
anisotropic harmonic oscillator in two dimensions. For the two-dimensional systems it was found to
be advantageous to decompose Bogomolny’s transfer operator into two “half-mapping” operators.
This approach, developed by Haggerty [M.R. Haggerty, Ph.D. thesis, Massachusetts Institute of
Technology, 1994 (unpublished); Phys. Rev. E 52, 389 (1995)], leads to an analytical solution for
the energy eigenvalues of the hydrogen atom. However, the energies are found to depend on the
quantum number n as (n —1/4) 2, unlike the exact quantum energies, which go as (n —1/2)~2. An
attempt to explain this one-quarter shift on the basis of the Langer-modified WKB approximation
is only partly successful. For the two-dimensional harmonic oscillator, numerical calculations yield

results close to the exact quantum energies.

PACS number(s): 05.45.+b, 03.20.+i, 03.65.—w

I. INTRODUCTION

Recent studies of the correspondence between classi-
cal mechanics and quantum mechanics have been mainly
concerned with the following problem: Assuming one has
detailed knowledge of the classical motion in a chaotic
system, what is the best way of using this knowledge
to obtain energy eigenvalues and eigenfunctions for the
analogous quantum system? Until recently, most ap-
proaches to this “semiclassical quantization problem”
were based on the well known Gutzwiller trace formula
[1, 2] and the closely related dynamical ¢ function [3-8].
To implement these methods, however, it is essential to
have a systematic way of finding all the periodic orbits of
the system, as well as their actions, periods, stability ex-
ponents, and phase indices—a difficult task for a general
system.

About three years ago a different approach to semiclas-
sical quantization was developed by Bogomolny [9, 10].
Central to his theory is a transfer operator T'(¢",¢’; E)
that is constructed from the classical trajectories con-
necting points ¢’ and ¢” on a suitably chosen Poincaré
surface of section (PSS). In a finite approximation to the
transfer operator, to be described in Sec. II, approximate
energy eigenvalues of the quantum system occur as the
solutions of a determinantal equation. The correspond-
ing energy eigenfunctions may also be calculated from the
appropriate semiclassical Green’s function [9, 11]. Bogo-
molny’s theory has the advantage that it does not require
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knowing the periodic orbits of the system. Furthermore,
it does not have convergence problems, is relatively easy
to implement, and, as will be seen presently, it takes ac-
count of the Heisenberg uncertainty principle in a natural
way.

Bogomolny’s transfer operator has been found to give
excellent results for the low-lying energy eigenvalues of
a variety of systems, including the quantum analogs of
classically integrable systems [12, 13], of classical systems
exhibiting “hard chaos” [13-15], and of classical systems
exhibiting “soft chaos” or mixed behavior [13, 16, 17].
(“Hard chaos” means that there exists a positive Lya-
punov exponent for almost all initial conditions; “soft
chaos” or mixed behavior means that there exist both
regular and chaotic trajectories in the classical phase
space.) In view of these successful results, one would like
to know whether the transfer operator can also be used
to obtain the energy spectrum of simple systems such as
the harmonic oscillator and the hydrogen atom. In this
paper we use the transfer operator to obtain the energy
levels of the one-dimensional and two-dimensional hydro-
gen atoms and the two-dimensional anisotropic harmonic
oscillator. Clearly, the motivation for this work has much
more to do with learning about Bogomolny’s transfer op-
erator than in finding yet another way of solving the hy-
drogen atom or the harmonic oscillator.

The paper is organized as follows. After a brief sum-
mary of Bogomolny’s theory in Sec. II, we treat the prob-
lem of the one-dimensional H atom in Sec. III. The theory
of the two-dimensional H atom is developed in Sec. IV,
making use of “half-mapping operators” introduced by
Haggerty [16, 17]. This leads to an analytical result for
the energy eigenvalues. In Sec. V, a similar approach is
applied to the two-dimensional harmonic oscillator. Fi-
nally, our results are discussed in Sec. VI.
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II. THE TRANSFER OPERATOR AND THE
DETERMINANTAL EQUATION

In Bogomolny’s theory, the transfer operator is defined
with respect to a given Poincaré surface of section. Al-
though the choice of the PSS is somewhat arbitrary, the
calculations are conceptually simple if one picks a “sur-
face” in the coordinate space that is frequently crossed
by the classical paths. For a system with two freedoms,
the PSS is simply a one-dimensional curve. If ¢’ and ¢
are points on this curve, one obtains the transfer opera-
tor by summing over all possible classical trajectories at
energy E that cross the PSS only once in going from ¢’
to ¢’ and have the normal component of the momentum
in the same direction at ¢’ and ¢”. The result for two
freedoms is [see Ref. [9], Eq. (4.18)]

1 1/2

825((]” qI,E)
T(d". d': :E : » 4
(@, q5 E) — (2mik)1/2 9q"dq’

x expliS(¢”,q; E)/h —ivn/2]. (1)

Here S(q”,q'; E) is the action at energy E calculated
along a classical trajectory connecting the points ¢’ and
¢" and crossing the PSS only once in between. The phase
index v is related to the number of points on the tra-
jectory at which the semiclassical approximation is not
valid.

One possible way of constructing a finite approxima-
tion to the T operator in coordinate space is to divide
the classically accessible part of the PSS into N cells,
the nth cell centered on g, having width A,,. In terms of
the transfer operator T'(gm, gn; E) from g, in cell m to
@n in cell n, the matrix element T,,(E) is defined to be

Tmn(E) = T(qmaQn,E)(AmAn)l/z (2)

Then the condition for an energy eigenvalue is that (see
[9], Sec. 8)

det[I — T(E)] = 0, (3)

where I is the unit matrix. The dimension of I and the
T matrix is, of course, equal to the number of cells NV on
the PSS.

Bogomolny writes down a prescription for the min-
imum number of cells required for a reasonably good
numerical calculation. Suppose one wishes to calculate
semiclassical energy eigenvalues E; up to some given en-
ergy E. The coordinate ¢ along the PSS and its conjugate
momentum p lie within an area A(F) of phase space ac-
cessible to the system at energy E. It is convenient to
refer to the surface defined by ¢q and p as the PSS in phase
space, and the term Planck cell will be used to denote a
region of this surface having an area equal to Planck’s
constant h. Then the number of Planck cells on the PSS
in phase space that are accessible to the system at energy
E is

Np(E) = A(E)/h = A(B)/(2rh). (4)

Bogomolny argues that the T' matrix of dimension Np(E)
constructed in this way will be approximately unitary.
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He also emphasizes that in performing numerical calcula-
tions one must choose N greater than Np(E) to number
obtain good numerical accuracy. In previous calculations
[13] it was found that the energy eigenvalues were ob-
tained with good accuracy when the ratio N/Np(E) was
approximately 6-10. Thus the size of the cells required
at energy E is consistent with the Heisenberg uncertainty
principle, since the uncertainties Ag and Ap in the end
points of the trajectories are such that AgAp =~ h/2.
The finite approximation leading to Eq. (3) has the
effect of making the solutions for the energy eigenval-
ues E; complex, though usually with small imaginary
parts. The real parts can be determined by locating
the minima of |det[I — T'(F)]| plotted as a function of
E. We shall present our calculated results for the two-
dimensional harmonic oscillator in this way in Sec. V.

III. THE ONE-DIMENSIONAL HYDROGEN
ATOM

In this section we construct the transfer operator for
the one-dimensional hydrogen atom and obtain from it
the quantum energy eigenvalues. The Hamiltonian de-
scribing the electron’s motion is

p? e

“om

2

()

where m is the mass and —e is the charge of the electron,
p is its linear momentum, and z is its position with re-
spect to the nucleus of charge +e fixed at the origin. If

the particle has a negative energy F = —|E/|, as shown
in Fig. 1, the classical motion occurs between the points
—|#m| and |z,,|, where |z,,| = €2?/|E|. For this one-

dimensional motion, the Poincaré surface of section for
the transfer operator is simply a point, say zg, located
somewhere between —|z,,| and |z,,|. (In fact, the PSS
might consist of a finite number of points.)

\

FIG. 1. Potential for the one-dimensional hydrogen atom
showing the classical turning points |zm,| and —|zm| corre-
sponding to the energy E.
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What are the classical trajectories that start out from
To in, say, the positive z direction and return to zo mov-
ing again in the positive x direction? One might think
that if the nucleus does not act like a solid wall but only
as a mathematical singularity that the classical trajec-
tory would be the round-trip confined by the classical
turning points —|z,,| and |z,,|. However, this is not the
case. A careful analysis of this one-dimensional problem
in the context of celestial mechanics may be found in the
treatise by Szebehely [18]. By the technique known as
regularization (clearly described in the book by Stiefel
and Scheifele [19]), in which the time variable is trans-
formed to a new variable 7 such that dr = dt/|z|, the
motion of the particle is slowed down as it approaches
the origin. It is then possible to show that the classical
particle turns around at the nucleus and comes out again.
At the end of Chap. 3 Szebehely notes that, “Already
Euler [in 1765] regularized the problem of collision of two
bodies moving on the same straight line.” As Szebehely
points out, it is illuminating to think of this motion as
the limit of a two-dimensional Kepler orbit in which the
eccentricity of the ellipse approaches unity. As the limit
is approached, the ellipse becomes extremely narrow, the
J

T(E) = (exp(iv) expl[iS(E) /h — in] 0
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semiminor axis b and the “perihelion” distance go to zero,
and the “aphelion” distance approaches the length of the
major axis 2a.

It is now clear that the PSS must consist of two points,
say |zo| and —|zo|, in order to treat the separate orbits
along the positive and negative z axes. In both cases the
action integral is

|2m]
S(E):Z/O (2m)V/2(e? )z — | E|)Y?d

=me?(2m/|B|)?. (6)
(The integral is readily worked out with the help of the
substitution u? = |E|z/e%.) Also, each classical orbit

has associated with it a phase index v = 2 resulting from
a phase shift of 7/2 occurring at each classical turning
point. Furthermore, we take the prefactor in Eq. (1) to
have unit modulus in order that the 7" matrix be uni-
tary. This assumption is necessary because the second
derivative, with respect to coordinates ¢’ and ¢” along
the PSS, is undefined when the PSS consists of isolated
points. Thus the T' matrix corresponding to the two cells
of the PSS has the form

\
0 exp(iv) exp[iS(E) /h — i) ) (7)

where v is an unknown phase constant. Equation (3)
then becomes

{1 — exp(iv) exp[iS(E)/h — in]}* = 0, (8)
the solutions of which are given by

S(E)/h=+2nr+7—v, n=0,12,.... (9)

Substituting the expression for the action from Eq. (6)
we obtain

me4

Ey=——g— .
2R%(£n 4+ T1)2

(10)

Clearly, the energy eigenvalues depend on the phase
constant v, the value of which is not determined by the
condition that the T' matrix in Eq. (7) be unitary. How
should it be chosen? In the usual WKB treatment of a
particle moving in a one-dimensional potential V (), one
obtains Eq. (9) with v = 0. This would lead to the energy
eigenvalues varying as (n— 3) 2, whereas the exact solu-
tion of the Schrodinger equation for the one-dimensional
hydrogen atom [20] yields Eq. (10) depending on n™2.
Thus the “natural choice” of v = 0 leads to the energy
eigenvalues calculated from Bogomolny’s transfer oper-
ator being shifted by 1/2 from the exact energy eigen-
values. It will be recognized, however, that the choice
v = m, a posteriori, yields the correct quantum energy
eigenvalues, although we do not have a good reason for
making this choice.

It is interesting to note that if we had taken the clas-
sical orbit as making the round-trip between —|z,,| and

+|x,,| instead of turning around at the nucleus, we would
have obtained the wrong answer by a factor of 4. Thus
the quantum system appears to “know” the correct clas-
sical orbits obtained by regularization.

IV. THE TWO-DIMENSIONAL HYDROGEN
ATOM

The hydrogen atom in two dimensions presents a chal-
lenge to Bogomolny’s theory because of the peculiar
properties of its classical orbits. It would be natural to
choose the surface of section in the plane of the motion
to be a single radial line extending from the nucleus out
to the maximum distance attainable at a given energy.
One could then divide this line into cells having widths
such that the areas of the cells in phase space are equal
(as will be described in more detail later in this section).
If the center of the nth cell is a distance r, from the
nucleus, the classical trajectories starting out from r,,
constitute a one-parameter family of Kepler ellipses, all
of which return to r,, after one revolution. As there are
no other trajectories, the 7" matrix corresponding to the
chosen cells on the PSS would be diagonal. However, for
each diagonal element of T', the second derivative of the
action would be infinite, because 7, is a self-conjugate
point. This may be seen by examining

S(am, a3 E) _ Opn _ 1 (11)
dq/0q, Oql  9ql/0p,’

where p!, is the radial component of the initial momen-
tum at ¢}, and ¢! is the final position on the PSS, which
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in the present situation coincides with g/, for all the el-
lipses of the family of energy E. Since ¢, does not vary
when the direction of the initial momentum changes (or,
equivalently, when p/, varies), dq/,/9p!, = 0 and the sec-
ond derivative of the action is therefore infinite.

To circumvent this difficulty we make use of an idea
employed by Haggerty [16,17] in his studies of a smooth
nonscalable potential (the Nelson potential) using Bogo-
molny’s transfer operator. Introducing polar coordinates
(r, @) with the origin at the nucleus, we choose the PSS
to consist of the two radial lines extending out from the
nucleus in the directions ¢ = 0 and ¢ = w. We then
decompose the T operator into the product T' = T 75,
in which Ty and T, have the same form as in Eq. (1)
but correspond to “half orbits”: the operator 77 con-
sists of trajectories in the upper half-plane connecting
different cells on the PSS and T, consists of trajectories
in the lower half-plane connecting different cells on the
PSS. With the help of the stationary phase approxima-
tion, Haggerty established the relation T' = T1T; for the
relevant operators given by Eq. (1).

The situation is illustrated in Fig. 2 in which r; and
ro are the centers of cells on the lines ¢ = 0 and ¢ = =,
respectively. For given energy E (which is negative) and
for given r; and rz, there are exactly two Kepler ellipses
passing through r; and 72. [A single circular path does
not occur since it requires that r; = ry = e2/(2|E|), a
possibility that is ruled out by the way the cells are cho-
sen on the PSS. See Egs. (32) to (34) below.] In order
to construct the transfer operators 77 and T, we require
general expressions for the action, phase index, and sec-
ond derivative of the action for both elliptical paths join-
ing r; and 7;.

Before presenting these expressions, we first show that
when r; and r, are specified, we can immediately cal-
culate the angular momentum L = mr2d¢/dt, which, of
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FIG. 2. Two ellipses passing through the points r; and r2
on the PSS. The trajectories for T} are shown as solid lines,
while the trajectories for T, are shown as the dashed lines.
The angle 6 is the “shooting angle” for the upper ellipse.
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course, is constant. Let the two ellipses shown in Fig. 2
be written in the standard form

B 1
" me21— ecos(édF o)’

where € is the ellipticity and +¢¢ gives the orientation of
the major axis of the ellipse with respect to the line ¢ = 0.
(In writing the ellipses in this form, we are assuming that
ry > r2. The case ry > rq requires that the sign preceding
€ in the denominator be changed to +.) Setting ¢ = 0 in
Eq. (12) we obtain for both ellipses

(12)

L2 1

me? 1 — ecosgg (13)

Ty =
Similarly, setting ¢ = 7 in Eq. (12) we obtain for both
ellipses,

L? 1
= — 14
"2 = e 1 + € cos g (14)

Eliminating € cos ¢ from these equations, we have

L? = 2me? 212 (15)
1+ T2
The same result is obtained from a similar calculation for
the case 7y < rs.
To obtain expressions for the actions along the two
paths from r; to 7o, we first write

T2 T ro
S(re,r1; E) :/ prdr—}—/ Ppdd = / prdr+ L,
0 1

(16)

with p, = £(2m)'/%[e?/r — |E| — L?/(2mr?)]Y/2. Let
the perihelion and aphelion distances be r;, and 7yax,
respectively. The indefinite integral over r can be shown
to be

S(r) = (2m)™/>2 /[ez/r _\B| - L2/(2mr?)]2dr

= (2m)1/2[ezr — |E|r? - Lz/(Zm)]l/2

(2m)'/2e?
—W sin [(6 - 2|E|r)/a]
—Lsin"l[(e2r — L%/m)/(ar)], 17)

where a = [e* —2|E|L?/m]'/2. Then along the path from
r1 to rg that passes through 7., we obtain

Tmax T2
Sa(rz,rl;E):/ |p,.|d7'—/ |pr|dr + L7

=25(rmax) — S(r1) — S(r2) + L~
mwe?(2m)t/?

I—W—S(ﬁ)—s(h)- (18)

Similarly, along the path that passes through rn;, we
obtain

7762(2m)1/2

Sp(r2,r1; E) = ARE

+ S(r1) + S(r2). (19)

To derive an expression for the second derivative of the
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action in terms of |E|, r; and ry we first write

9%S(r,ri; E) _ Ops 1

aTzaTl - 8?2 - 8r2/8p1’ (20)
where p; is the radial component of the momentum at
position ;. Let 6 be the angle between the tangent to the
upper ellipse in Fig. 2 at r; and the line ¢ = 0. Haggerty
calls this the “shooting angle.” From the symmetry of
the two ellipses, the shooting angle of the lower ellipse is
m — 6. Since the angular momentum at (r = ry,¢ = 0) is
L = ripsinf= ripsin(m — 0), where p is the magnitude
of the linear momentum at (r = r1,¢ = 0), we find with
the help of Eq. (15) and conservation of energy that

627’2
(r1+r2)(e? —ri|E|)

sin® @ = sin®*(7 — 0) = (21)

Hence

. r1(e? — r1|E|) sin® 0 (22)
?7 e2cos20 +71|E|sin? 0’

We can now write the derivative on the right-hand side
of Eq. (20) as

(5)- () () /(%)

e*/|E|
T(rs,r1; E) =/ droT(rs,ro; E)T (2,13 E) =
0

exp(—im
2mih

) [</El
/ d?‘z
0
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Setting p; equal to p cos 0 or p cos(m—0) and carrying out
the partial differentiations with respect to 6, we obtain,
after a short calculation [eliminating sin @ and cos 6§ with
the help of Eq. (21)],

828(ra,r1; E) | (2m)1/2e?
Arydry  2(r1 +12)%/2[e2 — (11 + 3) | E[]V/2
(24)

This result applies to both trajectories in the upper half-
plane in Fig. 2.

Finally, we must determine the phase index v for each
path, using the standard rule of incrementing v by unity
each time the radial component p, changes direction at
a classical turning point. Since the radial motion passes
through either a maximum or a minimum while executing
each trajectory from r; to r2 (see Fig. 2), the phase
indices are v, = v = 1.

We can now write down the full T operator as
the product of the half-mapping operators T and T,
[16,17]. Let T'(ra,r1; E) describe the mapping from r; to
r2 in the upper half-plane (the solid lines in Fig. 2) and
let T'(r3,r2; E) describe the mapping from r; to 73 in the
lower half-plane (the dashed curves in Fig. 2, but ending
at a position r3 to the right of the origin). Since r; is
restricted to the range between 0 and e2/|E| on the part
of the PSS to the left of the origin, the full T operator
from r; to r3 is, from Eq. (1),

1/2 1/2

825("'3,7‘2;13)
(9"‘38'/‘2

8%S(ra,r1; E)
87‘287‘1

x {expliSa(rs,T2; E)/h] + exp[iSs(rs, v2; E)/R]|} {exp[iSs(r2,71; E)/R] + exp[iSs(ra, m1; E) /R]} . (25)

We see that there are four integrals, involving the follow-
ing exponential factors:

exp(tSy(ra,r2; E)/h + iS,(re,71; E)/A]

= exp{i[S — S(rs) — 2S(rz) — S(r1)]/h}, (26a)

expliSa(rs,r2; E)/h + iSs(r2,71; E) /A]
= exp{i[S — S(rs) + S(r1)]/k}, (26b)

expliSs(ra, m2; E) /h + iSq(r2,71; E) /A]
= exp{i[S + S(rs) — S(r1)]/k}, (26c)

expliSs(rs, r2; E) /A + iSy(ra, m1; E) /1]
= exp{i[S + S(rs) + 25(r2) + S(r1)]/h}. (26d)

The right-hand sides of these expressions were obtained
from Eqgs. (18) and (19). The constant S is defined to be

me?(2m)t/?

S = [E|1/2

(27)

f

We now evaluate each of the integrals over 75 in the
stationary phase approximation. For the left-hand side
of (26a), the phase is stationary when

8S,.(r3,m2; E) + 8S4(r2,m1; E)

ory Ory =0 (28)

or when
B (r2) + P (rz) = 0. (29)
Here p&a’")(rz) is the radial momentum component at

the final point along trajectory a in the upper half-plane.
Likewise p,(,a’l)(rz) is the initial radial momentum com-
ponent along trajectory a from r; to 73 in the lower
half-plane. Similar relations result when the stationary
phase condition is written down for the left-hand sides
of (26b)—(26d). In each case, the condition that the ra-
dial momentum components are equal implies that the
trajectories in the upper and lower half-planes must join
smoothly at r, the slope of the tangent to the curves
being continuous at rp. Figure 2 strongly suggests that
this will happen only when trajectory a goes into trajec-
tory b, or vice versa, and, in addition, r3 coincides with
r1. The latter requirement can be easily proved analyt-
ically by adapting Eqgs. (21) and (22) to the trajectories
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going from 73 to r3 in the lower half-plane, imposing the
requirement that the tangent varies smoothly across the
join at ra.

To evaluate the four integrals involving the exponen-
tials in (26) by the stationary phase approximation, we
first note that S(r2) given by Eq. (17) increases mono-
tonically as 72 goes from 0 to e2/|E|. Thus there is no
value of ry in this range at which the phase in (26a) or
(26d) is stationary; the exponentials will oscillate rapidly
as r, varies and the corresponding integrals may be taken
to be zero. For the other integrals involving (26b) and
(26¢), the exponential factor is independent of ;. Hence,
assuming that 73 = 71 and making use of Egs. (24) and
(25) we obtain

exp(iS/h — im
T(ri,r; E) = inzg“—)

(e /lE' 71)
><\/‘()

o (2m)Y/%e2dr,
(7"1 + 7‘2)3/2[62 — (7‘1 + Tz)lEl]l/z )

(30)
The upper limit of this integral follows from the fact that
r1 + 72 cannot exceed the length of the major axis of
an ellipse of energy E, which is e?/|E|. The integral is

readily evaluated with the help of the substitution z2 =
(r1 + r2)|E|. The result is

exp(iS/h — im)

1/2/,2 . 1/2
Py 2(2m)*%(e*[/ry — |E|)*°.

T(T'l,ﬁ;E) =
(31)

When r3 is different from 7;, the expressions on
the right-hand side of (26b) or (26c) involve a factor
exp{+i[S(r1) — S(r3)]/h}, which oscillates rapidly as ei-
ther r3 or ry varies. It is plausible that, when averaged
over a small range of values of r3 or 71, such as the width
of a cell on the PSS, its magnitude will be relatively small.
We shall assume in what follows that T'(rs,r1; E) = 0
when r3 # r1, an assumption that is consistent with the
fact that all classical trajectories starting out from r;
return to r; after one orbit.

To determine the energy eigenvalues of the system we
make a finite approximation to the T operator in coor-
dinate space, as in Eq. (2). At energy E the accessible
region of phase space associated with the radial line ¢ = 0
is shown in Fig. 3. The area enclosed by the upper and

lower curves is
2

e*/(

A(E) =2(2m)1/2/

0

_ 7(2m)1/%e?

- |E|1/2

From Eq. (4), the number of Planck cells at energy E is
A(E) _ (2m)'/2e?
2mh  2m|E1/2°

We now divide the PSS in phase space into Np(E) cells,
each having area equal to h, as illustrated in Fig. 3.

|E])
(e?/r — |E|)Y/2dr

(32)

Np(E) = (33)
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FIG. 3. PSS in phase space showing the classically acces-

sible region on the right-hand side of the origin. The phase-
space cells are of equal area.

(Other ways of choosing the cells on the PSS in phase
space have not been investigated for the present prob-
lem.) The width A,, of the cell centered on 7, is deter-
mined by

2(2m)Y/%(e2 /r,, — |E|)Y? A, = 2rh. (34)

From Eq. (2), the nth diagonal element of the T matrix
is

T’ﬂn(E) = T(rnv"'n;E)Any (35)
which, with the help of (27), (31), and (34) simplifies to

Ton(E) = %exp[iﬂ'ez(Zm)1/2/(h[E|1/2) —in]. (36)

Note that this does not depend on r,. We also draw
attention to the factor of 1/% = exp(—in/2), which is re-
sponsible for the shift of one-quarter in Eq. (38) below.
Since we have argued above that the transfer operator
T(rs,r1; E) is zero when r3 # r;, the off-diagonal ele-
ments of the matrix T},,(F) are zero. Consequently, the
determinantal equation for the energy eigenvalues has the
simple form

p(E)

{1 — explime?(2m)Y/2 /(K| E|/?) —i37r/2]}N 0.

(37)

Clearly, an energy eigenvalue occurs whenever the quan-
tity in square brackets is equal to i2nw, where n =
0,+1,%£2,.... Hence the nth energy eigenvalue is

me?

" T T oRE(n - )2

n=12,.... (38)

The result in Eq. (38) is to be compared with the ex-
act quantum energy eigenvalues for the two-dimensional
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hydrogen atom:

me?

2R3 (n — 1)2’

E, = n=12,.... (39)

This may be derived by looking for a solution of the radial
Schrédinger equation of the form

R(r) =e ™" Z agr* (40)
k=0

and requiring that the series terminate at some value of
k equal to n (in order to obtain a solution that does not
increase exponentially with r).

How can we account for the shift of 1/4 in our result
derived from Bogomolny’s transfer operator? It is well
known that if one treats the three-dimensional hydrogen
atom in the WKB approximation, it is necessary to re-
place [(I+1) in the radial Schrédinger equation by (I+3)?
in order to obtain the correct energy eigenvalues. (See,
for example, Ref. [21], p. 314.) This replacement is justi-
fied by the transformation due to Langer [22], which has
the effect of making the radial wave function regular at
r = 0. For the hydrogen atom in two dimeunsions, if the
radial wave function is written as t;(r)/r'/2, the effect
of the Langer transformation is to replace [? — i in the
WKB wave function by [2 [23]. In the Appendix we ex-
amine the possibility of accounting for the 1/4 shift in the
energy eigenvalues on the basis of Bogomolny’s semiclas-
sical quantization scheme being equivalent to the Langer-
modified WKB approximation. The result of this analy-
sis is that the Langer modification to the WKB approx-
imation leads to the 1/4 shift when | = 0, in agreement
with our results in Eq. (38), but when [ # 0, it yields
the same result as the exact quantum energies, Eq. (39).
Thus the 1/4 shift in all the energy eigenvalues is not
explained by the Langer-modified WKB approximation.

Another possible explanation of the 1/4 shift in the en-
ergy eigenvalues is that it arose from the approximations
involved in going from Eq. (25) to Eq. (31). However,
it should be noted that the stationary phase approxima-
tion was invoked only to argue that the contributions to
Eq. (25) from (26a) and (26d) may be taken to be zero
for all values of r; and r3 and that the contributions
from (26b) and (26c) may be taken to be zero whenever
r1 # r3. When r; = r3, the contributions to (25) from
(26b) and (26c) are given ezactly by Eq. (31). Thus, for
the crucial matrix elements given by (31), the stationary
phase approximation has not been employed to work out
the integral. Consequently, one cannot blame the 1/4
shift on an “extra” use of the stationary phase approxi-
mation associated with the half-mapping operators. (In
fact, studying this possible explanation of the 1/4 shift,
which was present in earlier numerical calculations, led
us to the present analytical solution.)

V. THE TWO-DIMENSIONAL HARMONIC
OSCILLATOR

The trick of decomposing the transfer operator into
half-mapping operators T; and 7> also provides an ef-
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ficient way of finding the energy spectrum of the two-
dimensional harmonic oscillator by Bogomolny’s semi-
classical method. Here, however, the full T operator is
not diagonal in the position coordinates on the PSS and,
as a result, we have not found an analytic derivation of
the energy eigenvalues. Nevertheless, the use of half-
mapping operators for this system is advantageous and
leads to straightforward numerical calculations.
The Hamiltonian of the system is

H= (52 +80) + ymlwle® +wly?). (41)
It is assumed that the oscillator is anisotropic (w, # wy)
and that wy, > w;. We choose the Poincaré surface of
section to be along the = axis. When the energy of the
oscillator is E, the motion is restricted to the region from
z = —[2E/(mw2)]*/? to z = [2E/(mw?)]'/2. This inter-
val is then divided into IV cells (where N is even), the nth
cell having its center at x,, with width A,. The widths
A, are chosen so that the cells on the PSS in phase space
have equal area. [The area of the nth phase-space cell is
approximately 2A,,(2mE — m?w?2z2)1/2 ]

Let us consider how to construct the operator Ti,
which consists of classical trajectories connecting differ-
ent cells on the PSS in the upper half-plane. Choose any
two cells on the PSS and denote their centers by z; and
2. In general there is at most one classical trajectory
in the upper half-plane going from z; to z3, as we shall
see presently. For this trajectory we require expressions
for the action S(z32,z1; E), the phase index v, and the
second derivative 82.5/0z,0z,.

To find S(z2,z1; E) we first calculate the function

T
W (z2,21;T) :/ (3ma® — tmwla?)dt
0

T
+/ (%m;l)z - %mw;yz)dt, (42)
0

with T' = 7 /w,, the time for the trajectory to go from z;
to xp. Setting y(t) = gsin(wyt), we find that the second
integral is zero. The first integral will be evaluated from
z(t) = Zsin(wyt + ¢) after finding Z and ¢ such that

1 = Zsing, zo = Zsin(w, T + ¢). (43)

The solution is

tand = z1 sin(w,T)

s 44
xy — 1 cos(w,T) (44)

(2% + 22 — 22125 cos(w, T)]*/?

= sin(w,T)

(45)

Note that of the two possible choices for ¢ given by Eq.
(44) (which differ by the angle ), we require the one
that gives the correct sign for z;, which may be posi-
tive or negative. Thus, provided that & does not exceed
[2E/(mw?)]'/2, there is only one classical trajectory from
z1 to xz2, as stated above. It is also worth noting that
because we assumed w, > w, and since T = 7/w,, the
denominator of Eq. (45) is positive and nonzero. Using
these results we can evaluate the first integral in Eq. (42),
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obtaining the familiar result [24, 25]

MWy
W(zs,z1;T) = m[(mf + x3) cos(w,T) — 22122].
(46)
Finally, the action is given by
S(za,z1; E) = W(z2,21;T) + ET, (47)
with T' = 7 /w,, and the second derivative is
828 MW,
= —— , (48)
Oz,10z2 sin(w,7/wy)

which is a constant, independent of x; and z,.

As in the case of the hydrogen atom in two dimensions,
we take the phase index v to be unity for the classical
trajectory of a given half-mapping. The reason is that
when the motion during the half-mapping is viewed in
polar coordinates, one sees that the radial component
passes through a single turning point.

We are now in a position to construct the N x N half-
mapping matrix T;. From Egs. (1), (2), and (48) the
matrix element for the classical trajectory from z; to x,
on the PSS is

1 mw 1/2
Ti|z1) = .
(@2|T1|z) (27ik)1/2 |sin(w,m/wy)
x exp[iS(z2,z1; E)/h — in/2])(A1A2)Y2,

(49)

with S(z3,z1; E) given by Egs. (46) and (47). The same
expression can be used to calculate (z1|T1|x2); T1(E) is
a symmetric matrix.

The transfer matrix T involving classical trajectories
in the lower half-plane has the same form as T; be-
cause the harmonic oscillator potential is symmetric un-
der reflections in the x axis. Haggerty’s theorem [16,17],
T = Ty T,, applied to Eq. (3), gives the following equation
for the energy eigenvalues:

det[(I — T1)(I + T1)] = 0, (50)
which is equivalent to

det[I —T1(E)] =0 or det[l +Ti(E)] =0. (51)

The first of these equations is associated with eigenfunc-
tions that are even when y — —y, while the second is
associated with eigenfunctions that are odd. _

In Figs. 4 and 5 we show plots of |det[] — T (F)]| and
|det[I + T (E)]| as a function of the scaled energy E. For
the calculations we chose w, = 0.5 and w, = 0.9, with
the units corresponding to m = h = 1. From the exact
quantum energy eigenvalues of the anisotropic harmonic
oscillator

Ep n, = hwe(ng + %) + hwy(ny + %),

ny=0,1,...; ny,=0,1,..., (52)

and the definition

EZ

B-_ 2
2hw, hwy (53)
the corresponding scaled energy eigenvalues are readily
calculated. The vertical dashed lines in Fig. 4 show the

positions of the lowest 22 scaled eigenvalues E, ., with

n, even. The solid curve in the figure is |det[] — T} (E)]|
as a function of E, the matrix elements of T} (E) having
been calculated using Egs. (46)—(49). In this calculation
the dimension N of the matrix T)(E) was initially set
to be 20, but above E = 3, it increased in such a way
as to hold the ratio N/Np(F) approximately equal to 6.
[The number of Planck cells on the phase-space surface
of section (z,p;) is Np(E) = E/(hw1).] The small dis-
continuities in the solid curve of Fig. 4 occur at energies
at which N increased by 2. Thus, as F increased from
3 to 40, N increased from 20 to 72. Figure 5 shows a
similar plot of |det[I + T1(E)]| as a function of E. The
vertical dashed lines are drawn at the positions of the
exact eigenvalues E,_,, 6 with n, odd.

In both plots the minima of the solid curves are close to
the exact scaled energy eigenvalues, but there are several
eigenvalues for which there is no minimum in the calcu-
lated curve. [This situation is only slightly improved by
increasing the ratio N/Np(FE) from 6 to 10.] A partial un-
derstanding of what is happening may be obtained by ex-
amining the first eight minima in Fig. 4. With the eigen-
values labeled as (ng,ny) in accord with Eq. (52), these
are, in order, (0,0), (1,0), (2,0), (3,0), (0,2), (4,0), (1,2),
and (5,0). The deep minima near E=7and E =10
correspond to (0,2) and (1,2), while the other minima,
corresponding to (n;,0), become steadily less deep as n,
increases, disappearing completely by the time n, = 5. It
seems that the present method of calculation is not well
suited to describing the eigenstates with relatively large
quantum numbers associated with the eigenfunctions on
the PSS. We do not know of any other system for which
Bogomolny’s transfer operator has been found to fail in
this way.

VI. DISCUSSION

Bogomolny’s semiclassical quantization scheme has
proven to be an excellent method for calculating approx-
imate energy eigenvalues for classically chaotic systems
[13-17]. In this paper we have applied it to two sim-
ple two-dimensional integrable systems. For the two-
dimensional hydrogen atom, the half-mapping operators
introduced by Haggerty [16, 17] provide a convenient
technique for spreading out the one-parameter family
of Kepler ellipses at energy E. The resulting energy
eigenvalues have been found to have a one-quarter shift
relative to the quantum numbers of the exact quan-
tum energies. For states in which the angular momen-
tum quantum number [ is zero, a similar shift is found
in the Langer-modified WKB approximation. However,
when I # 0, the Langer modification does not lead to
a shift from the exact energy eigenvalues. This means
that we cannot regard Bogomolny’s transfer operator as
giving results entirely equivalent to the Langer-modified
WKB approximation. Nor can we regard it as equiv-
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FIG. 4. Plot of |det[I — T1(E)]| as a function of E =
E?/(2hw,hw,) for the two-dimensional harmonic oscillator
with w, = 0.5 and w, = 0.9. At each energy, the dimension
of the matrix Ti(E) was taken to be six times the number
of Planck cells at that energy. The vertical dashed lines are
located at the scaled eigenvalues E,, ny, With n, even.

alent to pure quantum mechanics. In previous numeri-
cal calculations employing Bogomolny’s transfer operator
[13,15-17], the energy eigenvalues have not been found
to be shifted from the exact quantum energies in a sys-
tematic way. The 1/4 shift found here, which was also
present in our earlier numerical calculations, seems to be
peculiar to the two-dimensional hydrogen atom.

With regard to the two-dimensional harmonic oscilla-
tor, our numerical calculations place the energy eigenval-

4

|det(1+T)]
.
|

T
|
|
1
|
|
|
0 5 10 15 20

|det(I+T)|

FIG. 5. Plot of |det[I + Ti(E)]| as a function of E calcu-
lated in the same way as in Fig. 4. The vertical dashed lines
are located at the scaled eigenvalues E,,n, with n, odd.
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ues at the exact quantum energies, but fail to yield the
eigenvalues corresponding to large quantum numbers as-
sociated with the PSS. We do not understand the reason
for this failure.

Although Bogomolny’s formalism is based on a semi-
classical Green’s function, the precise nature of this ap-
proximation is not clear. In support of its giving ex-
act quantum results one can point to the analytic solu-
tion obtained by Lauritzen[12] for the rectangular billiard
and the calculations we have presented here for the two-
dimensional harmonic oscillator. On the other hand, it
has recently been shown that the wave functions for the
circle billiard obtained using Bogomolny’s formalism are
equivalent to the Langer-modified WKB approximation
[11]. In view of this “mixed” situation, it would be very
interesting to know what results Bogomolny’s approach
yields for the three-dimensional hydrogen atom.
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APPENDIX: THE LANGER-MODIFIED WKB
APPROXIMATION

In this appendix we examine the ordinary WKB ap-
proximation and the Langer-modified WKB approxima-
tion, in an attempt (only partly successful) to explain the
1/4 shift in the energy eigenvalues of the two-dimensional
hydrogen atom obtained by Bogomolny’s transfer oper-
ator. [See Egs. (38) and (39).] Our discussion follows
closely the analysis of Berry and Ozorio de Almeida [23],
who studied precisely the situation with which we are
concerned—the semiclassical approximation to the radial
equation for two-dimensional potentials. The analysis in
Pt. 2 of Langer’s paper [22], adapted to the radial equa-
tion in two dimensions, is also pertinent.

We begin with the two-dimensional Schrédinger equa-
tion containing the potential V(r) = —e?/r. After sep-
arating variables and setting the angular part equal to
exp(+il$) and the radial part equal to w;(r)/r'/?
find that the wave function ;(r) satisfies

2 2072 _ 1

, We

(A1)

where €2 = h%/(2m) and [ is the angular momentum
quantum number. The standard WKB method of solving

this equation leads to the approximate wave function

BB (1) = [Qo(r)] /2 exp (iz' / Qo(r)dT) ,

(A2)

where
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(Qu(r)]? = i(E . —) SEal (49)

r2

Here r¢ is usually chosen to be a zero of Qo(r), i.e., a
classical turning point. Berry and Ozorio de Almeida
show in detail that this approximation fails, for all values
of I, not only at the turning points where [Qo(r)]?> = 0,
but also at » = 0.

Langer [22] proposed a better approximate solution to
equations such as (A1) by making the transformation

r = e® and ¥;(r) = e®/2u;(r), the range of z being —oco
to co. When applied to Eq. (A1) it gives

Py (z

U | (e Pue) =0, ™
x
where
1
la(&))? = S (2B + eme?) — 2. (A5)

For cases in which [ is nonzero, the WKB method applied
to this equation is valid at z = —oo (which corresponds
to r = 0). After transforming back to the variable r, we
obtain the Langer-modified WKB wave function

Langes (1) — [Qy ()] "/ exp (a:z- / ledr) ,
(A6)

with

62 2
@) = 5B+ ) - 5.

Comparing these equations with (A2) and (A3) we see
that the effect of the Langer transformation is to replace
12— 1 in ¢VKB(r) with I? in 'gbl[‘anger(r). When r is suffi-
ciently small that the term —!2 /72 dominates in [Q1(r)]?,
one finds from (A6) that there is a solution of the form
1/111"“8“(7') ~ r!*t1/2 which is regular at » = 0. However,
when | = 0 the Langer method fails completely. Berry
and Ozorio de Almeida used the “method of comparison
equations” to obtain a solution to Eq. (A1) for this case,
which is regular at » = 0.

Our interest here, however, is not in obtaining accurate
solutions but in finding out what the Langer-modified
WKB solution of Egs. (A4) and (A5) yields for the energy
eigenvalues. We consider the cases | # 0 and | = 0
separately.

When I # 0 and E < 0, there exist inner and outer
turning points of Eq. (A5) at z; and z2, respectively.
The function [g(z)]? can be expanded about each turning
point to first order in z. The standard analysis at a linear
turning point leads to the usual connection formulas for
wi(z) at z1 and z, [see Eq. (14) of Ref. [22] or Eq. (39)
of Ref.[23]]:

lg(z)|7*/% exp (— /: |q(a:)|da:)

x

5 2)q(a)| "/ cos (L g(z)dz — 7r,/'4) . (A8)

(A7)
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la(2)| /2 exp (— / |q(m)|dx)

— 2]q(z)| "2 cos (L

Noting that

exp(2/2)lq(2)| 7% = |Qu(r)| 72,

/ ale)do = [ Qi (r)dr,

we can write the connection formulas for ¥;(r) as

1Q1(r) /2 exp (~ I ;Q1(7>|dr)

T2

q(z)dx — 7r/4) . (A9)

(A10)

(A11)

— 2|Qu(r)| 7/ cos <[ Qi(r)dr — 7r/4) . (A12)
Q1 (r)| /2 exp (_ / ,QI(,)ldr)

3 2Qu ()| /2 cos (/ Q1 (r)dr — 7r/4> . (A13)

In order that the solutions on the right-hand sides of
these relations be the same in the region r; < r < ry, we
require that

cos [ [ Qi(r)dr — /4
(/ )

T2
= =+ cos (/ Q1(r)dr — 7r/4) . (A14)
ka
This is satisfied if
T2
/ Qi(r)dr = (n, — 3)m, n, =0,£1,%2,....
1

(A15)

[Equations (A14) and (A15) are the same as Berry and
Ozorio de Almeida’s (43) and (44).] This integral is es-
sentially the same as the indefinite integral S(r) defined
in the first line of Eq. (17). With the upper and lower
limits taken to be the turning points we obtain

7(2m)1/2e? 1
From this we find the energy eigenvalues
4
me
E,=————, n=12,.... Al7
2h%(n — 1)2 (A17)
where n = n, + l. These are the exact quantum en-

ergy eigenvalues as in Eq. (39). Thus the Langer-
modified WKB approximation cannot explain the one-
quarter shift when [ # 0. [It may be noted that the ordi-
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nary WKB approximation also does not account for the
one-quarter shift since it would give the result in (A16)
with [ replaced by (12 — 1)1/2]

When | = 0 and E < 0, the inner turning point is
r =0 or £ = —oo. From Eq. (A7), the dominant term in
[Q1(r)]? as r — 0 is (e/€)?/r. Consequently, [; Q1(r)dr
varies as r1/2 for small r. In order that ¢5**5 (r)/r1/2 be
regular at 7 = 0, one must choose the linear combination
of solutions of the form (A6) to be

[I;ange’(r) =[Q1(r)]"*?sin (/)r Ql(")dr)

=[Q1(r)]7*/* cos (/Or Q1 (r)dr — 7T/2>.

(A18)

[Note that if the phase angle in the sine function were
nonzero, the radial wave function %¢®*¢" (r) /r'/2 would
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be infinite at » = 0.] If this cosine function is substi-
tuted on the left-hand side of Eq. (A14), the condition
for matching the solutions in the interval between 0 and
r2 becomes

T2
/ Qu(r)dr = (n— Lyr,  n=0,+1,42,....
(1]
(A19)

Evaluating this integral with the help of Eq. (17) with
L =1 =0, we obtain the energy eigenvalues

me?

En=-—s——\ n=12,..., A20)
2h%(n — 3)? (

in agreement with the result obtained using Bogomolny’s
method [see Eq. (38)]. Thus, only when ! = 0 is it pos-
sible to interpret the 1/4 shift in the energy eigenvalues
as due to Bogomolny’s semiclassical approximation being
equivalent to the Langer-modified WKB approximation.
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